1

Let $f_n\in L^2(\mathbf{R})$ be a sequence of square integrable functions, $f_n\to f$ almost everywhere, and $\|f_n\|_{L^2}\to \|f\|_{L^2}$. Prove that $\|f_n-f\|_{L^2}\to 0$.

I want to use the dominated convergence theorem but I don't know how to control $\|f_n\|_{L^2}^2$.

user37238
  • 3,949
  • 3
  • 19
  • 30
Xiang Yu
  • 4,657
  • 1
  • 22
  • 36

0 Answers0