11

Possible Duplicate:
$\lim_{n \to +\infty} n^{\frac{1}{n}} $

I know that

$$\lim_{n\rightarrow\infty}\sqrt[n]n=1$$

and I can imagine that $n$ grows linearly while $n$th root compresses it exponentially and therefore the result is $1$, but how do I calculate it?

Santhos
  • 213
  • 1
  • 2
  • 6

6 Answers6

29

Perhaps one of the most elementary ways to prove it: since $\,n\geq 1\,\,\forall n\in\mathbb{N}\,$ , we can put$$\sqrt[n]{n}=1+c_n\,,\,c_n\geq0\Longrightarrow n=(1+c_n)^n\geq \frac{n(n-1)}{2}c_n^2$$using the binomial expansion ,so that$$0<c_n\leq\sqrt\frac{2}{n-1}$$and now just apply the squeeze theorem and get $\,c_n\to 0\,$, which is precisely what we need.

DonAntonio
  • 208,478
  • 17
  • 131
  • 283
7

$$\lim_{n\rightarrow\infty}\sqrt[n]n$$ $$=\lim_{n\rightarrow\infty}e^{\frac{\ln(n)}{n}}$$ and as we know that $\lim_{n\rightarrow\infty}\frac{\ln(n)}{n} = 0$ {apply l'Hospital's rule}
So $$\lim_{n\rightarrow\infty}\sqrt[n]n=1$$

Martin Sleziak
  • 51,859
  • 20
  • 181
  • 357
Saurabh
  • 3,088
  • 4
  • 25
  • 43
6

Claim: For each $a>1$, there exists $N$ such that $n<a^n$ for all $n>N$.

Proof: Write $a=1+b$. By the binomial theorem, $a^n=(1+b)^n\geq \frac{1}{2}n(n-1)b^2$ when $n\geq 2$. Thus $\frac{a^n}{n} \geq \frac{1}{2}(n-1)b^2$. It follows that if $N$ is at least $2/b^2+1$, then when $n>N$, $n<a^n$.


As a consequence, for each $a>1$, there exists $N$ such that $1\leq n^{1/n}<a$ for all $n>N$, and this implies that $\lim\limits_{n\to\infty}n^{1/n}=1$.

Jonas Meyer
  • 52,066
  • 8
  • 197
  • 296
  • 1
    [DonAntonio's answer](http://math.stackexchange.com/a/154188) is simpler. – Jonas Meyer Jun 05 '12 at 10:54
  • 1
    Yes, thanks for noticing it. One of the things I've never forgotten since my late prof. in $1$st undergraduate year taught us this proof: I think I drooled for a while completely fascinated for the simplicity of the proof, compared with what several books showed. – DonAntonio Jun 05 '12 at 11:00
  • 1
    @DonAntonio: Inspired by your post I cleaned mine up a little (but didn't essentially change the method). – Jonas Meyer Jun 05 '12 at 11:01
5

One could use the fact that for a sequence of positive terms, if $\lim\limits_{n\rightarrow\infty}{a_{n+1}\over a_n}$ exists, then so does $\lim\limits_{n\rightarrow\infty} \root n\of {a_n}$ and the two limits are equal. A proof of this general fact can be found in these notes of Pete L. Clark. This result can also be found in many analysis texts; e.g., baby Rudin.

That your sequence has limit $1$ is easily shown using the above fact. A detailed proof that your sequence has limit $1$, based on the proof of the above fact, can be found in this thread.

Martin Sleziak
  • 51,859
  • 20
  • 181
  • 357
David Mitra
  • 73,290
  • 9
  • 136
  • 196
  • See also [here](http://math.stackexchange.com/questions/28476/finding-the-limit-of-frac-n-sqrtnn/28487#28487) and [here](http://math.stackexchange.com/a/76800/) for the result on relation between $\frac{a_{n+1}}{a_n}$ and $\sqrt[n]{a_n}$. – Martin Sleziak Jun 05 '12 at 16:41
  • The linked text later became a part of the notes on [Honors Calculus](http://alpha.math.uga.edu/~pete/2400full.pdf) ([Wayback Machine](https://web.archive.org/web/20220503044808/http://alpha.math.uga.edu/~pete/2400full.pdf)). – Martin Sleziak Jul 05 '22 at 05:37
5

Let's see a very elementary proof. Without loss of generality we proceed replacing $n$ by $2^n$ and get that: $$ 1\leq\lim_{n\rightarrow\infty} n^{\frac{1}{n}}=\lim_{n\rightarrow\infty} {2^n}^{\frac{1}{{2}^{n}}}=\lim_{n\rightarrow\infty} {2}^{\frac{n}{{2}^{n}}}\leq\lim_{n\rightarrow\infty} {2}^{\frac{n}{\dbinom{n}{2}}}=2^0=1$$

By Squeeze Theorem the proof is complete.

user 1591719
  • 43,776
  • 12
  • 99
  • 253
4

Let$$y=n^{\frac{1}{n}}$$ $$\log y=\log( n^{\frac{1}{n}})$$ $$\Rightarrow \lim_{n\to\infty}\log y=\lim_{n\to\infty}\frac{\log n}{n}$$ We have $\left(\frac{\infty}{\infty}\right)$ form so we apply L'hospital rule, we get, $$ \lim_{n\to\infty}\log y=\lim_{n\to\infty}\frac{\frac{1}{n}}{1}$$ $$\therefore \lim_{n\to\infty}\log y=\lim_{n\to\infty}\frac{1}{n}=0$$ Hence $$\lim_{n\to\infty} y=e^{0}=1.$$ It follows that, $$\lim_{n\to\infty}n^{\frac{1}{n}}=1.$$

Kns
  • 3,005
  • 2
  • 28
  • 41