1

$7^{-1}\pmod{11}$

the above can be found by

$7x\pmod{11}\equiv 1$ and $x=8$

now i am confused on how to find $7^{-2}\pmod{11}$ and $7^{-3}\pmod{11}$ .

N. F. Taussig
  • 73,706
  • 13
  • 53
  • 71
R K
  • 2,615
  • 3
  • 43
  • 80

1 Answers1

5

Hint $\,\ 7^{-2} \equiv (7^{-1})^2\ $ since $\ 7x\equiv 1\,\Rightarrow\, 7^2 x^2\equiv 1.\,$

Bill Dubuque
  • 265,059
  • 37
  • 279
  • 908
  • so can i substitute like $7^{-2}\equiv (7^{-1})^2\equiv(8)^2\\\equiv 64 \equiv 9 \pmod {11}$ ? – R K Feb 26 '15 at 15:41
  • 1
    @RK Yes, $\ \color{#c00}{7^{-1}\equiv 8}\,\Rightarrow\, (\color{#c00}{7^{-1}})^2\equiv \color{#c00}8^2\ $ by the $ $ [Congruence Power Rule.](http://math.stackexchange.com/a/879262/242) $ $ Similarly for $\ 7^{-3}\ \ $ – Bill Dubuque Feb 26 '15 at 15:46
  • and similarly for $7^{-3} \equiv 7^{-2}\cdot 7^{-1}\\ \equiv 9\times 8 \equiv 72 \equiv 6 \pmod {11}$ – R K Feb 26 '15 at 15:49
  • 1
    @RK Yes, done smartly by the [Congruence Product Rule.](http://math.stackexchange.com/a/879262/242) – Bill Dubuque Feb 26 '15 at 15:51