3

Let $M$ be a $\mathcal{C}^1$ submanifold of dimension $1$ of $\mathbb{R}^2$. Then for each $x\in M$, there is a neighbourhood $U$ of $x$ and a $\mathcal{C}^1$ function $f:U\to \mathbb{R}$ such that $M\cap U=f^{-1}(\{0\})\cap U$ and $\nabla f\neq 0$ on $U$.

Question: Is it possible to just define $f$ globally such that $M=f^{-1}(\{0\})$?

kaleidoscop
  • 223
  • 1
  • 8
  • 2
    Is $M$ compact? If not, there are counterexamples. See [Is every embedded submanifold globally a level set?](http://math.stackexchange.com/questions/23764/is-every-embedded-submanifold-globally-a-level-set). –  Jan 03 '15 at 04:29
  • @Behaviour, no there are no counterexamples even in the non compact case because [such a global $f$ always exists](http://math.stackexchange.com/a/879449/3217). See also [here](http://math.stackexchange.com/a/864058/3217). – Georges Elencwajg Jan 03 '15 at 10:27

0 Answers0