I asked this in regular SO but I think people are not understanding the question so i will try here:
So, for anyone familiar with Google Maps, when you zoom, it does it around the cursor.
That is to say, the matrix transformation for such a zoom is as simple as:
TST^{-1}*x
Where T is the translation matrix representing the point of focus, S the scale matrix and x is any arbitrary point on the plane.
Now, I want to produce a similar effect with a spherical camera, think sketchfab.
When you zoom in and out, the camera needs to be translated so as to give a similar effect as the 2D zooming in Maps. To be more precise, given a fully composed MVP matrix, there exists a set of parallel planes that are parallel to the camera plane. Among those there exists a unique plane P that also contains the center of the current spherical camera.
Given that plane, there exists a point x, that is the unprojection of the current cursor position onto the camera plane.
If the center of the spherical camera is c then the direction from c to x is d = x - c.
And here's where my challenge comes. Zooming is implemented as just offsetting the camera radially from the center, given a change in zoom Delta, I need to find the translation vector u, colinear with d, that moves the center of the camera towards x, such that I get a similar visual effect as zooming in google maps.
Since I know this is a bit hard to parse I tried to make a diagram:

TL;DR
I want to offset a spherical camera towards the cursor when I zoom, how do i pick my translation vector?