I might be able to give an answer to your question under certain conditions.
Let $x_{i}$ be your true value for the $i^{th}$ data point and $\hat{x}_{i}$ the estimated value. If we assume that the differences between the estimated and true values have
mean zero (i.e. the $\hat{x}_{i}$ are distributed around $x_{i}$)
follow a Normal distribution
and all have the same standard deviation $\sigma$
in short:
$$\hat{x}_{i}-x_{i} \sim \mathcal{N}\left(0,\sigma^{2}\right),$$
then you really want a confidence interval for $\sigma$.
If the above assumptions hold true $$\frac{n\mbox{RMSE}^{2}}{\sigma^{2}} = \frac{n\frac{1}{n}\sum_{i}\left(\hat{x_{i}}-x_{i}\right)^{2}}{\sigma^{2}}$$
follows a $\chi_{n}^{2}$ distribution with $n$ (not $n-1$) degrees of freedom.
This means
\begin{align}
P\left(\chi_{\frac{\alpha}{2},n}^{2}\le\frac{n\mbox{RMSE}^{2}}{\sigma^{2}}\le\chi_{1-\frac{\alpha}{2},n}^{2}\right) = 1-\alpha\\
\Leftrightarrow P\left(\frac{n\mbox{RMSE}^{2}}{\chi_{1-\frac{\alpha}{2},n}^{2}}\le\sigma^{2}\le\frac{n\mbox{RMSE}^{2}}{\chi_{\frac{\alpha}{2},n}^{2}}\right) = 1-\alpha\\
\Leftrightarrow P\left(\sqrt{\frac{n}{\chi_{1-\frac{\alpha}{2},n}^{2}}}\mbox{RMSE}\le\sigma\le\sqrt{\frac{n}{\chi_{\frac{\alpha}{2},n}^{2}}}\mbox{RMSE}\right) = 1-\alpha.
\end{align}
Therefore, $$\left[\sqrt{\frac{n}{\chi_{1-\frac{\alpha}{2},n}^{2}}}\mbox{RMSE},\sqrt{\frac{n}{\chi_{\frac{\alpha}{2},n}^{2}}}\mbox{RMSE}\right]$$
is your confidence interval.
Here is a python program that simulates your situation
from scipy import stats
from numpy import *
s = 3
n=10
c1,c2 = stats.chi2.ppf([0.025,1-0.025],n)
y = zeros(50000)
for i in range(len(y)):
y[i] =sqrt( mean((random.randn(n)*s)**2))
print "1-alpha=%.2f" % (mean( (sqrt(n/c2)*y < s) & (sqrt(n/c1)*y > s)),)
Hope that helps.
If you are not sure whether the assumptions apply or if you want to compare what I wrote to a different method, you could always try bootstrapping.