The $r$-th moment of a random variable $X$ is finite if $$ \mathbb E(|X^r|)< \infty $$
I am trying to show that for any positive integer $s<r$, then the $s$-th moment $\mathbb E[|X^s|]$ is also finite.
The $r$-th moment of a random variable $X$ is finite if $$ \mathbb E(|X^r|)< \infty $$
I am trying to show that for any positive integer $s<r$, then the $s$-th moment $\mathbb E[|X^s|]$ is also finite.
$0<s<r \Longrightarrow \forall X \, |X|^s \le \max(1, |X|^r) $