Example 1
Simulating from the copula $$C_0(u,v, \theta) = (u^{-θ} + v^{-θ} −
1)^{-1/θ}$$ can be done by the following algorithm (see also Embrechts et al., 2001 for much more fascinating details):
- Generate $U,V\stackrel{\text{iid}}{\sim}\mathcal{U}(0,1)$
- Take $W=(\{V^{-\theta/(1+\theta)}-1\}U^{-\theta}+1)^{-1/\theta}$
- Return $(U,W)$
Now your copula is the transform
$$C_1(u,v,a)=\exp\{1-C_0(1-\log u,1-\log v,-a)\}\,.$$
For an Archimedian copula of the form $$C(u,v)=\varphi^{-1}(\varphi(u)+\varphi(v))$$it can be shown that the pair$$S=\varphi(U)/\{\varphi(U)+\varphi(V)\},\ T=C(U,V)$$is associated with the joint cdf$$G(s,t)=s\{t-\varphi(t)/\varphi^\prime(t)\}=sK(t)$$(see Wu et al., 2006) which means $S$ and $T$ are independent and can be simulated as
- Generate $R,S\stackrel{\text{iid}}{\sim}\mathcal{U}(0,1)$
- Take $T=K^{-1}(R)$
- Take $U=\varphi^{-1}(S\varphi(T))$ and $V=\varphi^{-1}((1-S)\varphi(T))$